
ezeio™ Controller user manual

Version 120816

Page 1 of 90

Important information

WARNING

To reduce risk of fire or electric shock, do not expose this product to rain or
moisture. This product is designed for use indoors and only with the supplied
AC adapter. Unplug the AC adapter before opening the cover.

Registration

This product is identified by a unique serial number and a registration code.
You will need this information to communicate with the product.

Make a note of this important information below

Serial Number:

Registration code:

Support contact information

Go to www.ezecontrol.com for support and contact information.

Page 2 of 90

http://www.ezecontrol.co/
http://www.wiocontrol.com/

Table of Contents
Important information

WARNING..2
Registration...2
Support contact information..2

Introduction
What is the ezeio™ ?..5
Model information...6

Creating accounts and users
Overview..7
Creating a new account...7
Add a controller to an existing account..7
Adding users to an existing account..8

Connections and installation
Things to consider before installing the ezeio™.........................9
Power connection...10
Network connection...10
Standard inputs..12
Standard inputs – Voltage and resistive sensors.......................13
Standard inputs – Current sensors...14
Relay outputs..15
+ DC output terminal..15
MicroLAN...16
Modbus / serial port..18
GSM module..19

Web interface overview
Logging in...21

Dashboard screen
Dashboards...22

Status screen
Live input status...24
Output status and control..24
Thermostat status...25
Event log...25
Downloading log data..25
Viewing graph of log data..26

Configure screen
Resource tree..27
Service status and settings...28
Inputs...29
Alarm settings...31

Page 3 of 90

Actions..32
Conditions...36
Outputs..37
Schedules..38
Timers..38
Thermostats / Thermostat schedules...39
Devices..40
Script (premium feature)..41
System...42

Account screen
Account...47
Personal..48
Users...48

Sending control commands
Email..50
Control via SMS (cellphone texting)..51

Server API
API access and security...52
Live data in Excel or OO Calc..54
Live status in JSON format via REST API...................................55
Historical data access in JSON format via REST API................55
Controlling the ezeio via REST API...56

Scripting
Scripting introduction..61

Script function library
Configuration interface functions...65
Calendar and time functions..69
Mathematical functions..71
Language functions..75
String functions..76
Communication functions..81
Library functions..82
System events..84

Specifications
ezeio™ Controller...86
Configuration and programming...87
Server Communication..87
Warranty..88
Disclaimer...88

Standards compliance

Page 4 of 90

Introduction

Thank you for purchasing the ezeio™ controller!

What is the ezeio™ ?

The ezeio™ Controller is a general purpose Input/Output device, capable of
monitoring, logging and controlling a wide range of devices and equipment
through industry standard connections over the Internet.

The ezeio™ Controller automatically establishes a secure link to an array of
redundant and secure servers, allowing live access from a standard web
browser and eliminating the need for fixed IP, complex firewall setup or
special software.

Multiple ezeio™ Controllers can be set up under a single user account, thus
providing a simple overview of the status of any number of sites spread out
geographically from anywhere in the world.

All configuration, control, and access is accomplished by logging into the
secure servers via the Internet at www.ezecontrol.com. References to links
on the web site are shown in blue font throughout this manual.

Page 5 of 90

http://www.ezecontrol.com/

Model information

The ezeio™ controller is available in two versions:

ezeio Standard connects to the Internet via standard 10/100 Ethernet.

ezeio GSM includes a GSM radio that allows it to connect via wireless
service if the Ethernet connection is not available. The switchover is
automatic, and the Ethernet connection is always used if it's available.

Both versions run the same software and all other features are the same.

The ezeio includes four (4) analog inputs, two (2) relay outputs, MicroLan
and Modbus connectivity.

The ezeio can be expanded to a maximum of 40 inputs and 40 outputs,
which can be a mix of analog, digital, pulse, Modbus and MicroLan
inputs/outputs.

Some features depend on the service level. Moth versions come with four (4)
months of Basic Service, which allows for logging data from five inputs. See
our web page at www.ezesys.com for all the details about service levels and
the monthly cost.

Script support can be added to any controller. Please contact eze System for
more information.

Page 6 of 90

http://www.ezesys.com/

Creating accounts and users

Overview

To configure your controller, you need to create an account on the server and
associate the controller with that account.

➔ Each controller must be associated with a single account.

➔ Each user is associated with a single account.

➔ An account may have any number of controllers and any number of users
associated with it.

Note that you can register several controllers under the same account. This
allows you to access all of them from a single login. See Add a controller to
an existing account, page 7.

Creating a new account

Go to www.ezecontrol.com

Click Create a new account

The system will ask you for the controller serial number, and the registration
code. These are printed on a sticker on the back of your controller. Enter
them exactly as they show on the sticker.

The next few steps will create your admin user login and verify your email
address.

In addition to your login name and password, the system assigns you an
account ID. You will need the account ID every time you log in. Make sure to
take a note of it. It is also included in the confirmation email.

When you have confirmed your email address, your account is ready to use.
You can then go back to the log in page and log in.

Add a controller to an existing account

Log in to your account and click the Configure tab.

In the Tasks section, click Add controller and enter the serial number and
registration code.

Page 7 of 90

http://www.ezeconntrol.com/

Adding users to an existing account

To minimize the workload on the account owner, users register themselves.
You (the administrator or “admin”) need to provide each new user with the
serial number and the registration code to one of the controllers on your
account. It doesn't matter which controller you use. The information is just
used to link the user to the correct account.

Instruct the new user to go to the web page and click the Create a new
account link. Then enter the controller serial number and registration code.

Then follow the rest of the sign-up instructions.

This will automatically link the new user with your existing account, and
you will receive an email informing you that a new user has been added.

By default, new users have minimal privileges. You can log in and change
the privileges for each user by going to Account → Users and click on the
user in the list.

NOTE
Creating the account and adding users do not require the controller to be
connected to the network.

Page 8 of 90

Connections and installation

Things to consider before installing the ezeio™

The ezeio™ controller is designed for indoor use and should be installed in a
dry and clean location. Do not expose the controller to rain or water, and
avoid extreme temperatures. See the technical specifications for acceptable
ranges.

The ezeio™ controller is a low voltage device. Never connect high voltage to
the inputs or outputs, and only use the supplied AC adapter to power the
controller.

Do not run wires that connects to the ezeio™ (Inputs / outputs / MicroLAN /
Ethernet / ModBus / power or antenna) together with high voltage wiring.
Use separate conduits whenever possible, and avoid environments with
excessive RF or magnetic radiation as this may interfere or even destroy the
ezeio™ controller.

Take necessary precautions to avoid large static discharges to the ezeio™
connections.

Page 9 of 90

Power connection

Use the included AC adapter to connect to mains power.

The ezeio™ does not have an on/off switch, so as soon as the AC adapter is
connected, the ezeio™ will operate.

Typical power consumption is very small (<1W), and the ezeio™ is designed
to be always on.

Network connection

The ezeio™ has a standard TP 10/100 Ethernet connection. Use the included
network cable to connect to a nearby Ethernet hub/switch/router that
provides a link to the public Internet. If you use your own Ethernet cable,
ensure the length does not exceed 30m (100ft).

All communication parameters are pre-programmed in the ezeio™, so there is
nothing to set up. The ezeio™ will automatically contact the servers.

The ezeio™ automatically establishes addressing information through DHCP.
Ensure your network connection supports DHCP and that the DHCP server
provides valid gateway and DNS information.

The green LED on the Ethernet jack lights up as soon as there is a physical
connection available.

Page 10 of 90

Check the SERVER LED for connection status:

Blink pattern Meaning

5 blinks Looking for DHCP address information

4 blinks IP address established
Querying DNS server for server IP

3 blinks Server address established
Attempting to make contact with server

2 blinks Communicating with server

1 blink Server connection established and idle

Page 11 of 90

Standard inputs

The ezeio™ controller has four standard inputs. Each input may be
configured as either a voltage input (0-10V) or a current input (0-30mA).
From the factory, all four inputs are configured as 0-10V. To change this,
open the ezeio™ controller by removing the four screws and move the two
jumpers for the input you want to change as this picture illustrates:

Page 12 of 90

Standard inputs – Voltage and resistive sensors

The 0-10V input setting is suitable for sensors with output voltage in that
range. Simply connect the sensor to the input between the 0V terminal and
the input as shown here:

When configured for 0-10V, the input has a 15kΩ pull-up resistor to +5V,
allowing for variable-resistance devices or switches to be connected directly
to the 0V terminal and the input like this:

IMPORTANT
The controller is designed for 0-10 Volt sources.
Never connect high voltage to the controller input terminals.

Page 13 of 90

Standard inputs – Current sensors

To use 0-30mA (or 4-20mA) sensors, after setting the input jumper as
explained above, connect the current loop sensor between the +DC output
terminal and the input, like this:

The +DC output provides the same voltage as the DC input to the ezeio™
controller. The standard DC adapter shipped with the ezeio™ outputs 12V. If
a higher voltage is required for the current loop sensor, either use a different
adapter for the ezeio™, or feed the current loop from an external source, like
this:

The internal current sense resistor in the ezeio™ is 100Ω, so the loop voltage
drop at for example 20mA will be 2V.

Check the data sheet for your current sensor and make sure the voltage
source is at least 2V higher than the minimum voltage for your sensor.

Page 14 of 90

Relay outputs

There are two relay outputs on the ezeio™ controller. Each output has three
screw terminals; NC (Normally Closed), RE (center/common), NO
(Normally Open).

When the relay is not energized (off), the RE terminal is connected to the
NC terminal.

When the relay is energized (on), the RE terminal is connected to the NO
terminal.

This example shows how to connect a light bulb to one of the relay outputs:

IMPORTANT
The on-board relays are rated 50V / 2A.
NEVER connect high voltage to the on-board relays.

+ DC output terminal

The + output terminal can be used to power external sensors or relays. The
voltage on this terminal is nominally 1V lower than the input voltage on the
DC input jack.

The + DC output can supply up to 200mA.

Page 15 of 90

MicroLAN

eze System supplies a range of supported MicroLAN devices, such as
temperature sensors, pressure sensors, motion sensors, generic input or
output expanders.

Note that only devices supplied by eze System will work with the ezeio
controller. Supported sensors are automatically detected and added to the
configuration.

The ezeio™ supports up to 20 devices connected to the MicroLAN connector.

Local bus indicator

The Local bus LED indicates the status of the MicroLAN device
communications according to this table:

Blink pattern Meaning

off No devices detected and no devices expected

on Initializing

fast flash Searching for new devices

slow flash Devices configured/expected, but none communicating

2-flash Communicating, but at least one device missing

1-flash Communicating with all devices

Page 16 of 90

Connecting a MicroLAN device

To add a MicroLAN device to the ezeio™, simply connect it to the system
and power down/up the controller. When the controller is back online, log in
to your controller setup page and navigate to the Devices page to verify the
controller detected the new device.

As soon as the new device is recognized, the system will add inputs and
outputs as appropriate, and fill in default settings relevant to the type of
device.

MicroLAN connector pinout

RJ12 pin Signal Description

1 +5V +5V DC out, max 100mA

2 G Signal ground

3 Data 1-wire data (bidirectional)

4 G Signal ground

5 n/c not connected

6 DC+ 8-25V DC out, max 200mA

WARNING
MicroLAN devices are not compatible with connectors or cables made
for use with phones. Using phone products will likely cause irreparable
damage to MicroLAN products, and will void any warranty.

Do not exceed 50m (150ft) of total wire in your MicroLAN system. For runs
longer than 5m (15ft) we recommend using CAT-3 or CAT-5 type cabling.

Page 17 of 90

Modbus / serial port

The serial port is configured as a Modbus RTU master, suitable for driving a
network of up to 20 Modbus devices over up to 1000m (3000ft) of wire.
Note that the wire length may in some cases be limited by the device
specifications. The default communication settings are 19200bps, 8 data bits,
one stop bit.

RS-485/Modbus port pinout

Pin on
RJ45

Common
nomenclature

EIA/TIA-
485 name

Description T568A/B
color*

4 D1/D+ B/B' Data 1, V1 Voltage Blue

5 D0/D- A/A' Data 0, V0 Voltage Blue/white

7 VP 8-25V DC out, max 200mA Brown/white

8 Common C/C' Signal/power supply common Brown

This pin arrangement conforms to the Modbus specification, 2W-MODBUS
(see www.modbus.org).
Pins not listed above are not connected.

*) Standard Ethernet patch cables are usually suitable for extending the
Modbus signals. Make sure your cables conform to the T568A/B standard.

Connecting a Modbus device

Each ModBbus device will need to be configured to a unique bus address.
Typically there is a DIP switch on the Modbus device to do this. Sometimes
the Modbus address is configured locally through a menu. Consult the
manual for the specific Modbus device for details.

The ezeio™ controller needs to be configured with this address to
communicate with the new device. Refer to Configuring Modbus Devices,
page 40 for details.

Although many Modbus devices may work on the serial network, eze
System only supports the devices listed on the web page www.ezesys.com.

Page 18 of 90

http://www.modbus.org/

GSM module

The ezeio-G and ezeio-GZ have a built-in GSM radio module. This is used
to communicate with the server if the Ethernet connection is not available.
The switch between Ethernet and GSM is automatic.

When the Ethernet connection is available, the ezeio™ automatically
communicates via the wire.

If the Ethernet connection is not usable, the ezeio™ uses the GSM/GPRS
service to connect to the servers.

A valid SIM card with data service is required to use the GSM connection.
eze System does not supply SIM cards. Please contact your local wireless
operator for options and pricing.

To insert the SIM card in the holder inside the ezeio™, remove the four
screws to remove the lid, and slide in the SIM card in the holder.

Your GSM service must allow GPRS or EDGE connectivity. Typical data
usage for a full month is about 5 Mega Bytes, but may vary depending on
how frequently logging data is captured and other configuration parameters.

Do not use tools to tighten the antenna nut.
It only needs to be finger tight.

Page 19 of 90

GSM Settings

To activate the GSM communications, you need to enter the GPRS APN,
GPRS Login and GPRS Password on the system configurations screen.
These settings are different depending on your wireless carrier. You should
have received this information with your SIM card.

Note that these settings have to be downloaded into your ezeio controller
before the GSM will work. After making the changes, make sure you
connect the controller to a working network before you insert the SIM card.

Radio indicator

The Radio LED indicates the status of the GSM transceiver as described in
the table below.

'on-blink' refers to that the LED is on most of the time, and pulses off.

Blink pattern Meaning

off GSM radio is turned off

on Waiting for the GSM module to switch on

5 on-blink Attempting to initialize GSM module

4 on-blink GSM module requested SIM-PIN.

3 on-blink Module active. Waiting for GPRS network to be detected.

2 on-blink GPRS network ok. Establishing IP connection.

1 on-blink Server link dropped. Reinitializing.

Normal blinks 1-5 blinks. Reception quality (e.g.1-5 “bars” on a cellphone)

Page 20 of 90

Web interface overview
When the controller is online (Server LED flashing once every few seconds),
the data from that controller is directly available from the web.

The web interface can be accessed even if the controller is not online, but
only historical data will be available, and any changes to the configuration
will be saved and committed to the controller once it's back online.

Logging in

Go to www.ezecontrol.com and log in to your account.
You need your account number, user name and password.

There are four main sections of the web interface:

Dashboard – a configurable overview of your systems

Status – full live status of one controller at a time

Configure – settings for each controller

Account – account and user settings

Access to the individual features on the web site is controlled by the user
privilege settings and the service level of the controller.

Access to the web page is secured with SSL. If your browser or IT policy
does not allow this, the system can be accessed without encryption (not
recommended!) using: www.ezecontrol.com?insecure

There are no restrictions on the number of simultaneous users or on using
the same user login from multiple computers, but each user will be logged
out after 60 min of inactivity.

If the Dashboard is active, the auto-logout is disabled.

Page 21 of 90

http://www.ezecontrol.com/

Dashboard screen

Dashboards

After logging in, the Dashboard is always shown first.

There are two Dashboard views; Personal and Account.

The Personal view is only accessible by the logged in user, while the
Account view is common for all users on the same account. Only users with
privilege to change account information can alter the Account view.

Each Dashboard consists of configurable blocks, called “widgets”. There are
many widget types to choose from, and each user may set up the widgets to
his/her liking.

The widgets can be positioned on the Dashboard screen by dragging the blue
header.

The configuration screen for each widget is accessed by clicking the small
wrench-symbol in the blue header.

Page 22 of 90

Status screen
The Status screen shows the live status for a single controller at a time. The
available controllers are listed in the left on the screen and their online status
is shown as a green dot if online or a warning triangle if offline.

Note
Even if a controller is on line, sometimes it may take a few seconds for the
live connection to establish.

Page 23 of 90

Live input status

All configured inputs of the controller are listed in the Inputs table.

The Graph column shows a rough bar graph of the last minutes' data with the
most recent data to the right.

The Value and Unit columns show the current converted value of the sensor
input.

The Count column shows the number of pulse counts for the input. You may
alter this value manually by clicking the wrench icon next to the counter.

The count value is stored in non volatile memory every 90 seconds and
automatically restored on reset.

The Raw column shows the value from the hardware input before converting
it to a real world unit.

The Alarms column shows the current status of the four possible alarm
settings. Hover the mouse cursor over the symbols to see their meaning.

Output status and control

The outputs of the controller can be controlled directly with the on/off
buttons in the output table. The drop-down box allows automatic shutoff
after the selected time.

Page 24 of 90

Thermostat status

If thermostats are connected to the ezeio, they will automatically be listed on
the status screen. The current temperature, setpoints, calls, override status
and schedule setting is displayed and updated every few seconds.

The temperatures are shows in the unit used in the schedule.

The override status shows the number of minutes left on the override cycle.
If the number shown is negative, that means the override is a demand-
response adjust.

The wrench-symbol in the leftmost column brings up a dialog box that allow
for direct control over the demand-response feature.

Event log

At the bottom of the screen, the controller event log is shown. Any recent
events are temporarily highlighted.

Downloading log data

Select the input or inputs to download data from by checking the boxes in
the input list, and enter the desired time span in the From/To boxes.

Click the Download button to start the download of a CSV (comma
separated) file that may be opened in Excel, Calc and many other programs.

Page 25 of 90

Viewing graph of log data

Select the input or inputs you want to graph by checking the boxes in the
input list. Then enter the desired time span in the From/To boxes.

Click the Graph button to view the graph.

The statistics to the right in the graph-window updates automatically if the
graph view changes by zooming in/out.

Note that the “Area” and “Visible Area” values really only make sense if the
sensor used is a power or flow sensor.

Controlling the graph

By hovering the mouse cursor over the graph, information about each
sample will be shown.

The graph window allows zooming by highlighting a section with the mouse
(drag from top-left to bottom right) or by using the mouse scroll wheel.
Reset zoom by dragging right-to-left.

Panning is done by dragging using the right mouse button.

The legend allows turning on/off individual graphs by clicking on the “eye”
icon in front of the name.

Page 26 of 90

Configure screen
The Configure screen allows access to all the configurable parameters of
each controller.

Configuration can be done even if the controller is not accessible (off line).
The changes are then committed as soon as the controller comes back on
line.

Select the controller to configure in the table to the left.

Resource tree

The resources of the controller are shown in a structured tree form. The tree
can be expanded by clicking the plus icons.

Click the name of each object to see/edit more information on that object.

To commit changes, simply click the Save changes button. This will commit
the changes to the database, and also synchronize the changes with the
controller. If the controller is temporarily unavailable, the changes will be
transferred as soon as the controller communication is re-established.

Page 27 of 90

Service status and settings

With the controller selected in the left had column, click the Configure tab to get to the
Service status and settings screen :

Status

The top section shows when the service for this controller will expire, the number of
SMS/Voice alarms remaining this month, and the number of API requests remaining for the
current 24h interval.

Setting

In the settings box, you may select the level of service desired for this controller. You may
change the service level at any time, and the system will automatically pro-rate the
expiration date based on the service time remaining.

Note that the cost per month is lower if you prepay for more than 6 month. See the add
service page for all options.

Page 28 of 90

Inputs

Each controller can support up to 40 inputs. Each input has the following
settings:

Input name

A user defined name to identify the input.

Unit

The unit for the input, for example “Volt”, “kW” or “C”.

Decimals to show

The number of decimals to show when the converted value of this input is
displayed. Valid range is 0 – 8.

Max value in graphs

The maximum value on the vertical scale in graphs.

Min value in graphs

The minimum value on the vertical scale in graphs.

Input type

The type of this input. If “Custom” is selected, three more fields are
displayed to allow customization.

Input Raw to unit

The math used to convert from the raw input value to a real world unit. The
symbol “x” represents the unconverted input value in the equation.

Unit to input Raw

The math used to convert from the real world unit back to the raw input
value. Should be the inverse function of the Input Raw to Unit function.

Page 29 of 90

Digital pulse input

Normally the value of an input represents a voltage, current or resistance. If
the sensor connected is of pulse type (such as a S0 pulse), the input can be
defined as a Digital Pulse Input by enabling this check box.

When this box is checked, the input value will reflect the time between the
two last transitions from low (<0.9V) to high (>1.1V) on the input. The time
is presented as milliseconds, and range from 4 to 86400000 (10 days). If no
pulses are detected, the max value will be returned.

The shortest pulse that can be detected in this mode is 2ms.

When in Digital pulse input mode, the count register will automatically
count up for each pulse.

The Digital Pulse input type is currently only supported by the four inputs on
the controller. Inputs on expansion units (MicroLan and Modbus) only
support standard mode.

Log interval

This setting selects how often the value on the input is logged to the
database. The actual log value will be the average for the log interval.

Input location

This defines the source hardware from which the input receives its values.

The setting “Special/Software” allows external sources to set the value of the
input. External sources may be scripts (using the SetInputValue function) or
server supplied features.

Page 30 of 90

Alarm settings

For every input, up to four alarms can be defined. Each alarm has the
following settings:

Alarm name

A user defined name to identify the alarm.

Threshold for alarm

The threshold where the alarm should activate.

Alarm holdoff

Delay in seconds. The input value will need to exceed the threshold for this
time interval for the alarm condition to occur.

Threshold for restore

The threshold where the alarm condition should clear.

Restore holdoff

Delay in seconds. The input value will need to exceed the threshold for this
time interval for the alarm condition to clear.

If the alarm threshold is lower than the restore threshold, alarm condition is
automatically considered when the input value is lower than the alarm
threshold.

If both thresholds are set to the same value, the alarm will never activate.

Page 31 of 90

Actions

Actions describe what should happen when an alarm condition occurs or
restores.

There may be up to four actions on each alarm, and four actions on each
restore.

The settings for each action are as follow:

Action name

A user defined name for the action

Action type

Depending on the action type selected, different options are presented. See
below.

Send message

This will send a message to the defined destination.
Possible destinations are:

● Email
To send a message to an email recipient, simply enter the email address in the
Destination field. To enter multiple recipients, separate the addressees with a
comma or a semi-colon. In the message field to add a “newline” command use a
backslash, \. The \ is the same as typing a multi-line message where the first line
is before the \ and the next line is after. Make sure you use the backslash,”\”,
character, and not the /.

● SMS Text
To send SMS the first character in the destination field needs to be a plus (+),
followed by the complete phone number with no spaces or punctuation, including
country code.

Example for the US: +12125551234, for Sweden: +46707123456

Page 32 of 90

● Twitter
To send a message to a Twitter account, the destination should start with a '@',
followed by the twitter account name. The Twitter account needs to be linked to
the controller account, so a pop-up link will be displayed when the Save Changes
button is pressed. Be sure to click this link and log in to your Twitter account
when asked to.
If the Twitter account name is followed by colon and one of 'name', 'url',
'location', 'description', the corresponding account setting in Twitter will be
changed.

Example: @mytwitteraccount (update status)
@mytwitteraccount:description (update twitter account description)

● HTTP POST
To send a HTTP POST request, enter the url of the server starting with http://
or https://

● Voice
To dial the phone with a message simply enter the telephone number in the
Destination field. To enter multiple recipients, separate the telephone numbers
with a comma. Each number will be dialed in turn, and the subsequent number
will dialed only if the previous number does not acknowledge receipt of the call.
The number must not have any punctuation, no dashes or periods.
Calls within the US must start with 1. Calls to destinations outside the US must
start with 011 immediately followed by the country code.

● Control API call
If the destination starts with a #-character, the message is interpreted as an control
API call to another ezeio. Immediately following the #, enter the serial number of
the remote controller. If the remote controller is on the same account, no password
is needed. If the remote controller is on a different account, enter a colon (:)
followed by the control password.

In the message box, enter the desired parameters separated by comma. See the
REST control API section, page 56 for more information.

Example to turn on output 2 for 10 seconds on controller XYZ-987:
Destination : “#XYZ-987:secretpass”
Message: “output=2, cadence=1, duration=100”

Note that the ezeio that is controlled need to have API service activated.

Page 33 of 90

You may combine destinations by separating them with commas or
semicolons. It is possible to send an alarm message to email, twitter, HTTP
POST and place a voice call to multiple recipients all on the same alarm.

Please make sure that your email provider allows email from your controller. Some
providers filter incoming email in a way that will flag messages from your controller
as spam. If you have problems receiving email, please check what spam filters are
enabled, and look in the spam folders of your email service.

Also read the notes about the Message field below.

Twitter account messages should not be considered reliable alarm paths as often
these sites have issues with access and reporting.

Log event

This action will simply log the message in the controller event log together
with a time stamp.

Also read the notes about the Message field below.

Set output

This action will directly affect an output on the controller. Select output,
cadence and cutoff. The output will turn off after the cutoff time. Set the
cutoff to zero to run the cadence indefinitely, or until a different action
changes its state.

Set counter

This action will set the Count register on the referenced input to a specific
value.

Increment counter

This increments the Count register on the referenced input.

Decrement counter

This decrements the Count register on the referenced input.

Page 34 of 90

Notes about the Message field

The message field used for sending and logging event messages can be up to
4000 characters long, and can contain special references to insert values
from the system. References always start and end with a #-character.

This table lists the possible parameters:
Parameter Description

#VALx# Inserts the converted momentary value of input with number x.

#CNTx# Inserts the counter register value of input number x.

#OUTx# Inserts the current state (“on” or “off”) of output number x.

#SCHx# Inserts the current state (“active” or “inactive”) of schedule x.

Example of a message using references:
Warehouse temperature is #VAL8#.

The input/output/schedule number can be looked up by clicking the root
nodes in the resource tree.

Up to four (4) references are allowed in a single message.

Controlling the email subject

When sending emails, the subject field defaults to the text “ALARM” or
“RESTORE” followed by the name of the resource that caused the alarm and
the alarm name.

By inserting a vertical line character “|” in the message, the subject line will
be replaced with the text before the “|”, and the message body will be the
text after the “|”.

Example : “This is my subject|This is the body text”

Page 35 of 90

Conditions

The action can be optionally executed only if certain conditions are fulfilled.

Two conditions can be set for each action, and the logic can be either that
both conditions have to be true (AND), or that at least one of them is true
(OR).

When selecting the condition type, additional controls are shown depending
on the condition type.

The possible condition types are:

Input in alarm / not in alarm (restored)

Check if a given input is in alarm or restored.

Input less than (some value) / more than (some value)

Check if a given input level is currently over or under a given value.

Counter less than (some value) / more than (some value)

Check if the given input counter register is over or under a given value.

Counter equal to (some value)

Check if a given input counter register is equal to a given value.

Schedule active / inactive

Check if a given schedule is currently active/inactive.

Page 36 of 90

Outputs

Each controller supports up to 40 outputs. Each output has two possible
states: on or off.

Outputs can be controlled from Actions (see Actions, page 32), or manually
from the web interface or email (see Output status and control, page 24).

The settings for each output are:

Output name

A user defined name for the output.

Output location

This defines the hardware where the output is located.

Use only conditions

By checking this box, only the conditions affect the output state. If the
conditions are true, the output is turned on. If not, the output turns off.
Manual control will be disabled.

If the box is left unchecked, the output can be controlled by actions
(provided that the conditions are fulfilled) and by manual control. Manual
control is not affected by conditions.

For more details on conditions, see Conditions, page 36.

Page 37 of 90

Schedules

The ezeio™ supports up to 20 schedules.

Schedules can be used in condition logic to only cause actions during
specified times, or can be used to directly trigger actions.

Each schedule can define up to four intervals, and each interval can be active
on any day of the week.

To define a new schedule, click Schedules in the object tree, and then click
Add schedule.

Select the days of the week when each interval should be active, and the start
and stop time.

If the start time is before or equal to the stop time, the interval will not be
processed.

Up to four actions can be defined for when a schedule enters a defined
interval, and an additional four actions can be defined for schedule interval
exit.

For more information about actions, see Actions, page 32.

Timers

Timers are a simplified form of schedules. Up to 20 timers are supported for
each ezeio™.

When a timer reaches its defined point in time, it runs the defined actions
(up to four actions per timer), and counts down its recursion count. When the
counter reaches zero, the timer will not fire any more.

Timers can be set from external messaging, such as email. See Sending
control commands, page 50 for details.

Page 38 of 90

Thermostats / Thermostat schedules

The ezeio can communicate with up to 20 thermostats connected to the
Modbus network. The thermostats are controlled by thermostat schedules
that are defined under the “Thermostats” menu.

Every ezeio supports up to four (4) thermostat schedules, and each
thermostat schedule can control up to eight (8) physical thermostats.

To associate a thermostat to a thermostat schedule, first define the thermostat
schedule, then find the thermostat under the Device menu, and select the
appropriate thermostat schedule.

All thermostats that are associated with schedules will be listed on the status
page automatically, where the current status of the thermostat will be shown.

Thermostat schedule conditions

When the condition for a thermostat schedule is evaluated to be “true”, the
schedule is automatically put into alternate mode.

Other settings / Stir

The stir feature monitors the activity of each thermostat, and will ensure that
the fan runs to “stir the air” with the set interval as a minimum. If the
thermostat automatically uses the fan for heating or cooling, the stir timer is
reset to avoid unnecessary fan activity.

Stir holdoff sets the maximum number of minutes the fan is allowed to be
off.

Stir time sets the number of minutes the fan should run if there is no other
activity.

Page 39 of 90

Devices

The devices branch in the configuration tree lists all the defined hardware in
the system.

The first item is always the controller itself.

The other items are MicroLan and Modbus devices that the system has
knowledge about.

Configuring Modbus Devices

To add a Modbus device, first ensure the bus address is unique (see the
manual for the Modbus device for details).

Click the Devices root item in the configuration tree, and then click Add
Device.

In the dialog box, select the type of device you are adding, and click Add
Device.

Enter a device name for future reference, and the polling address that the
device was set up with.

The device resources will now be available in the system.

Page 40 of 90

Script (premium feature)

Scripting is a premium feature that can be enabled for advanced
programming of the ezeio controller. Please contact eze System if you wish
to use this feature.

If enabled, a “Script” option will be displayed in the resource tree.

Please refer to the special section about scripting starting on page 61.

Page 41 of 90

System

The system screen has the following settings:

Controller name

A user defined name to identify the controller

Controller location

A user defined text to identify the controller's location.

System info address

If you enter an email address here, the system will send informational
messages to this address when the controller contact with the server
fails/restores, or when the controller changes from communicating over
Ethernet to GSM and back. Copies of these emails are also sent to the
accounts system info address (see System info address, page 47)

Time zone

The time zone where the controller is installed.

API requests

This box shows the remaining number of API requests for this controller.
The count is reset every 24 hours to the selected service level setting (see
Service status and settings, page 28).

Read passcode

This code is used to authorize external access to data, such as API functions
and status requests. The code needs to be at least three characters long to be
accepted. Only data retrieval is allowed with this code. No changes to the
system are possible. To disable external access, leave this field blank.

Page 42 of 90

Control passcode

This code is used to authorize external commands, such as output state
changes or setting timers. The code needs to be at least four characters long
to be accepted.

To disable external commands, leave this field blank.

Registration code

This code is used to authorize new users to the account, or to register the
controller with a different account.

To allow a different account owner to take over the controller, that user will
need this code. In addition, the controller needs to be deleted from the
current account in order for it to be re-registered.

Allow firmware update

If unchecked, firmware updates will not be applied to this controller. This
may be desirable in critical systems, where the installation has passed
extensive testing. Usually we recommend leaving this checked.

Allow config update

If unchecked, no configuration changes will be downloaded to the controller.
Changes are still allowed on the server, but they are not synchronized.

Allow dealer access

This checkbox is only visible if the controller is serviced by one of eze
System's authorized resellers/dealer. The owner of the controller may choose
to allow configuration access to the dealer by checking this box.

The name of the reseller is visible to the right of the checkbox. Click the
name for contact information.

Delete controller

Click Delete controller if you want to remove the controller from your
account. The controller will be returned to an internal “pool” and be made
accessible to other account holders for re-registration – provided they have
the correct Registration code.

Note that all settings, and the log history for the controller will be retained
even if it's deleted.

Page 43 of 90

Ethernet settings

The settings for IP, Net mask, Gateway and DNS should normally be left
blank, which will enable standard DHCP. The settings only apply to the
physical Ethernet connection and if used, all four fields must have valid IP
settings.

WARNING: If these settings are incorrect, the controller will not be able to
communicate with the server.

To temporarily change to DHCP, apply the HALT jumper during power up.

Phone module PIN

This should be set to the PIN code on the GSM module. If the module does
not have a PIN code programmed, the system will auto-assign one and
populate this field.

SIM card PIN

This should be set to the PIN code on the GSM SIM card. If the card does
not have a SIM PIN code programmed, the system will auto-assign one and
populate this field.

GPRS APN, login name , password

These fields need to be set to the APN, login and password of the GSM
operator. Contact your GSM service provider for details.

Phone init string

Additional commands to the GSM module. Usually this should be left blank.

GPRS init string

Additional commands to the GSM module. Usually this should be left blank.

Phone module PIN, SIM card PIN, GPRS settings and init strings only
applies to ezeio™-G and -GZ models.

Page 44 of 90

Clone Controller

If the account has more than one controller associated, this function will
allow copying all settings and data from any other controller to the current
controller. This will overwrite any settings and data that exists on the current
controller.

For Cloning to work, the current controller need a service setting equal or
higher than the controller that will be cloned.

Modbus speed

This setting selects the communications speed on the Modbus interface.
Possible settings are 19200 bps (default) or 9600 bps.

Use slow polling

Some Modbus hardware require a delay between data exchanges. If this
checkbox is active, a 50ms additional delay is added between packets.

Type of controller

The hardware type of ezeio™ (usually 1)

Firmware version

The ezeio™ firmware version

Last system reset

Time and date of when the controller was last reset.

Last comm reset

Time and date of when the controller last renegotiated contact with the
server.

Last contact

Time and date of when the controller last communicated with the server.

Page 45 of 90

Last endpoint

IP-address and port of the controller when it last communicated with the
server.

Last local IP

The local IP of the controller when it last communicated with the server.

Page 46 of 90

Account screen
The account screen allows access to all settings for to manage account and
users. Only account administrators are allowed to change account
information and edit other users.

Depending on user privileges, there are up to three tabs on the account
screen:

Account - Generic account information

Personal - Own settings

Users - Settings for the other users on the same account.

Account

The settings under this tab are informational in nature. They do not change
the functionality of the eze™ system.

Contact email

The contact person and email is referenced in emails for supporting users on
the account, and is also sent an informational email when new users register.

System info address

If you enter an email address here, the system will send informational
messages to this address when a controller on this account fails/restores
contact with the server, or when a controller changes from communicating
over Ethernet to GSM and back. Copies of these emails are also sent to the
controller system info address, see page 42.

Account status

By checking the Accept New Users checkbox, new users can register with
the account, provided they have a controller serial number and registration
code of a controller that is already enrolled with the account.

Page 47 of 90

Personal

The personal tab allows access to information about the logged in user. The
user can edit these settings if the edit own info privilege is set for the user.

If the user attempts to change the email address, a confirmation email will be
sent to the new address. The user must retrieve a confirmation code from
that email and enter it in the Confirmation Code field in order for the new
email address to be accepted.

The Confirmation code is only required when changing email address.

Users

The Users tab lists all users on the account, except for the logged in user. If
there are no other users registered on the account, this list will be empty.

To add users, please refer to Creating accounts and users on page 7.

To see and edit information about a specific user, click on the row in the list.

The account administrator is able to change any information about the user,
except for the login name.

Passwords are stored in encrypted form in the system, and can never be
shown in the clear.
If a user has forgotten the password, the administrator may assign a new
password, but cannot retrieve the old one.

Log in

This check box must be checked to allow the user to log in.

Edit own info

This check box allow the user to change the information under the
“Personal” tab.

Edit controllers

This check box allows the user access to the Config tab.

Page 48 of 90

Remote control

Check this box to allow the user to control outputs and timers via the web. If
this box is unchecked, the user will not see the Remote Control Passcode on
the System screen.

Release controllers

If this box is checked, the user can delete controllers from the account.

Manage account

With this box checked, the user can access other users information and
privilege settings.

Page 49 of 90

Sending control commands

Email

Timers and outputs can easily be controlled via email. You will need:

The serial number of the controller.
The Control passcode (from the Configure → System screen)
The name of the output or timer you want to control.

Create a new email and sent it to {serial}@ezecontrol.com

where {serial} is the serial number of the controller. For example:
xyz987@ezecontrol.com

The email subject can be left blank

The first line of the email shall be the Control passcode.

The following lines shall be commands, for example:

output warehouse lights on
(turn on the output named "warehouse lights")
out warehouse lights on 20s
("output" can be abbreviated, 20s means it will be on for 20 seconds)

out warehouse lights blink 1h30min
(blink is the 0.5s on / 0.5s off cadence, run for 90 minutes)

timer sauna 18:00
(trip the timer named "sauna" at 6pm, once)

timer sauna 6:15pm
(am/pm is accepted also)
timer sauna off
(disable the timer, set counter to zero)

timer sauna 1810 x12
(colon in time is optional. Start at 6:10pm the following 12 days)

timer sauna thursday 9:00
(Start on Thursday 9am, once)

timer sauna 3-27 13:45
(MM/DD or MM-DD)
tIM SAUna FRI 11:23pM
(case doesn't matter, and weekdays can be abbreviated, 3 chars min)

The system will reply with an email to confirm the command was
understood.

Page 50 of 90

Control via SMS (cellphone texting)

Just as the ezeio can be controlled through email, SMS (Short Message
Service) can also be used.

The message should be sent to +1 612-326-5729 with controller serial
number, passcode and commands separated by comma or line break.

Example:

SMS to 612-326-5729:
xyz987,mysecretpass,output fan on

(turn on the output named “fan”)

The system will reply with a SMS message to acknowledge the action.
Unlike email commands, there will be no reply message if the controller ID
or password is invalid.

See email commands for a complete reference of recognized commands.

Page 51 of 90

Server API

API access and security

The API can be accessed either through HTTP or HTTPS. We strongly
advise against accessing API features through HTTP, since the
communication in this case will be sent unencrypted.

If at all possible, use HTTPS for API access.

In order to use the API features, the controller must have a service level that
includes enough API calls for the specific application.

Click the Configure tab to set an appropriate service level for each
controller.

Page 52 of 90

API authentication and example

All REST/JSON calls use the Digest auth (RFC 2617) method to validate
credentials for accessing data. This avoids sending access credentials
unencrypted even if SSL is not used, although we recommend using SSL
whenever possible.

The user name is the controller serial number (e.g. 'XYZ-987'), and the
password is the read-passcode for status.php and log.php calls, and the
control-passcode for calls to control.php

Parameters may be passed by either the GET or POST method.

This is a simple example of how to call the log.php API from PHP code:

<?php
 $url = "https://ezecontrol.com/api/log.php"; // API URL

 $serial = "XYZ987"; // Controller serial
 $pass = "supersecret"; // Read passcode

 $fields = array(
 "input" => 4, // input 4
 "from" => "2010-08-22", // start time
 "to" => "2010-08-24" // end time
);

 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_DIGEST);
 curl_setopt($ch, CURLOPT_USERPWD, "$serial:$pass");
 curl_setopt($ch, CURLOPT_POST, 1);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $fields);
 $result = curl_exec($ch); // send the request
 curl_close($ch);

 print_r (json_decode($result)); // process the response
?>

The API can also be called directly from a browser like this:

https://XYZ987:supersecret@ezecontrol.com/api/log.php?
input=4&from=2010-08-22&to=2010-08-24

Page 53 of 90

https://ezecontrol.com/api/log.php

Live data in Excel or OO Calc

The input status can be accessed directly from a spreadsheet application.

In Microsoft Excel **:

On the Data tab in the Get External Data group, click From Web.

In the dialog box, enter:
https://ezecontrol.com/api/inputsnapshot.php?
ser={serial}&pw={password}

{serial} is the serial number of the controller, for example xyz987.

{password} is the Read password from the Config → System page.

Click Go and wait for the table to appear within the dialog. If an error
message appears, select Only Secure Data.

Click the yellow arrow to select the table, and then click Import.

A dialog box will allow you to change the location of the table in the
spreadsheet. Choose the location and press the properties tab to select more
options, such as how often the data refreshes.

From the properties box, click Ok and Ok again to place the data.

** This description applies to Excel 2007. Other versions of Excel may work
differently. Please consult Microsoft documentation for details.

In OpenOffice Calc:

On the Insert-menu, select Link To External Data..

In the URL box, enter:
https://ezecontrol.com/api/inputsnapshot.php?
ser={serial}&pw={password}

{serial} is the serial number of the controller, for example xyz987.

{password} is the Read password from the Config → System page.

Press enter. A list of available tabs/ranges will show up after a few seconds
(be patient). Select the last one, named HTML_LiveInputStatus.

If desired, select the Update Every checkbox and the interval.

Click OK. The data will show up in your spreadsheet.

Page 54 of 90

Live status in JSON format via REST API

This API call returns the most current status of the controller, including all
inputs, outputs, thermostats and the last few log events.
https://ezecontrol.com/api/status.php

The password needs to be the “Read passcode” from the system setting.

The following parameters are recognized:
Parameter Range Description

logid (optional) The last log id from previous call (use if frequently calling the API
to reduce the amount of data returned)

peek (optional) 0 (default), 1 If set to 1, the server will return the cached status rather than
sending a request to the controller. This will speed up the
request and reduce the data traffic to the controller (useful if
controller is on cellular).
The cache is updated roughly every minute while controller is on
a physical connection, and every 10 minutes while on cellular.

Example:
https://ezecontrol.com/api/status.php?logid=4821349

Historical data access in JSON format via REST API

This API call will return historical data related to a given input:
https://ezecontrol.com/api/log.php

The password needs to be the “Read passcode” from the system setting .

The following parameters are required:
Parameter Range Description

input 1 – 40 The input number

from YYYY-MM-DD[HH:MM] Year, month, day, and optionally hour and minute when the data
should start.

to YYYY-MM-DD[HH:MM] Year, month, day, and optionally hour and minute when the data
should end.

Note that all timestamps are is Zulu time.

Example:
https://ezecontrol.com/api/log.php?input=4&from=2009-03-
05&to=2009-03-08

Page 55 of 90

https://ezecontrol.com/api/status.php

Controlling the ezeio via REST API

The following API call allow direct control of several features:
https://ezecontrol.com/api/control.php

The password needs to be the “Control passcode” from the system setting.

The following parameters are required in each call:
Parameter Range Description

output
counter
input
timer
thermostat
thermostatschedule

See below See below for required parameters for each control type

Direct output control : 'output'

Use this command to directly control the output state.
Parameter Range Description

output 1 – 40 The number of the output to control

cadence 0 – 7 (see below) The cadence to apply

duration 0, 1 – 65535 Number of 1/10th seconds to run this cadence before turning the
output off again. 0 = infinite

Example, turn on output 1 for 2 seconds:
https://ezecontrol.com/api/control.php?
output=1&cadence=1&duration=20

Cadence Pattern

0 Off

1 On

2 100ms on / 900ms off (0.1s pulse every second)

3 1s on / 9s off (1s pulse every 10s)

4 2s on / 58s off (2s pulse every 60s)

5 100ms on / 100ms off (5Hz blink)

6 0.5s on / 0.5s off (1Hz blink)

7 1s on / 1s off (0.5Hz blink)

Page 56 of 90

https://ezecontrol.com/api/control.php

Set input counter : 'counter'

Use this command to change the value in one of the counter registers.
Parameter Range Description

counter 1 – 40 The number of the input/counter

value 0 – 2^31 The new value of the counter

Example, set the counter value on input 5 to 12345:
https://ezecontrol.com/api/control.php?
counter=5&value=12345

Set input value: 'input'

Use this command to change the value of one raw input value.
Parameter Range Description

input Min 1 character The name of the input

value -2^31 – 2^31 The new raw value of the input

Example, set the counter value on input 5 to 12345:
https://ezecontrol.com/api/control.php?
input=5&value=12345

Page 57 of 90

https://ezecontrol.com/api/control.php?ser=XYZ-987&pw=password&input=5&value=12345
https://ezecontrol.com/api/control.php?ser=XYZ-987&pw=password&input=5&value=12345

Set timer: 'timer'

Use this API to set up an exisiting timer.
Parameter Range Description

timer 1 – 20 The timer number to set up

year (optional) 2000 – 3000 Year. If not set, default is “any”.

month (optional) 1 – 12 Month. If not set, default is “any”.

day (optional) 1 – 31 Day of the month. If not set, default is “any”.

weekday (optional) 0 (Monday) – 6 (Sunday) Weekday. If not set, default is “any”.

hour 0 – 23 (24h format) Hour - required

minute 0 – 59 Minute - required

count (optional) 1 – 255 Number of times the timer shall be executed. Set to 255 to
repeat forever. Default is 1.

At a minimum, either hour/minute or count needs to be given for the
command to be accepted.

Example, Trip timer 1 once, next Tuesday at 8:15pm
https://ezecontrol.com/api/control.php?timer=1&
weekday=2&hour=20&minute=15

Example, Change the count without affecting the time setting:
https://ezecontrol.com/api/control.php?timer=1&count=5

Page 58 of 90

https://ezecontrol.com/api/control.php?timer=1&

Control thermostat: 'thermostat'

This API controls a thermostat directly
To leave a setting unchanged, just omit the parameter from the command.
Parameter Range Description

thermostat 1 – 31 Thermostat modbus polling address

setHeat 150-400 (1/10 Celcius)
500-950 (1/10 Farenheit)

Heating setpoint in 1/10th degrees. (so 745 = 74.5 F)
Setpoint is immediately applied, and the override timer will start
automatically. When the override timer runs out, the thermostat
will reset to its programmed setpoints.

setCool 150-450 (1/10 Celcius)
460-990 (1/10 Farenheit)

Cooling setpoint – see setHeat

adjHeat 0 to -150 Adjust the heat setpoint down this number of 1/10th degrees
minAdjust need to be non-zero for this command to work

adjCool 0 to 150 Adjust the cool setpoint up this number of 1/10th degrees

minAdjust 0 (disable) to 1439 Number of minutes the system will use the adjHeat/adjCool
settings before it returns to normal proramming.

setLock “ON”, “OFF” If set to “ON”, the keypad is locked and will not accept any user
input.

setScheduleMode “AUTO”, “STANDARD”,
“ALTERNATE”

Force the thermostat to use either the standard or the alternate
settings from the controlling thermostat schedule. This overrides
the condition setting in the schedule.
AUTO returns to programmed state.

setSysMode “OFF”, “HEAT”, “COOL”,
“AUTO”

Set the operating mode of the thermostat.

setFanMode “OFF”, “AUTO”, “ON” Set the fan operating mode of the thermostat. Note that not all
modes are supported by all thermostats.

newDataLatch 0, 1 If set to 1, the setHeat/setCool/setSysMode/setFanMode settings
will be applied and override any other changes until latch is
released.

Example; adjust +/-3 degrees for 90 minutes on thermostat on address 5
https://ezecontrol.com/api/control.php?
thermostat=5&
minAdjust=90&
adjCool=30&
adjHeat=-30

(line breaks added for clarity)

Page 59 of 90

https://ezecontrol.com/api/control.php

Modify thermostat schedule: 'thermostatschedule'

This API controls the settings of a thermostat schedule.
To leave a setting unchanged, just omit the parameter from the command.
Parameter Range Descriptiont

thermostatschedule 1 – 4 Thermostat schedule number (required)

day 1 (Monday) – 7 (Sunday) Comma separated list of which days in the schdeule that the
change will apply to (required)

interval 1 (morning), 2 (day),
3 (evening), 4 (night)

Comma separated list of which intervals for each day the
change will apply to (required)

stdHeat 150-400 (1/10 Celcius)
500-950 (1/10 Farenheit)

Heating setpoint in 1/10th degrees. (so 745 = 74.5 F), standard
schedule mode.

stdCool 150-450 (1/10 Celcius)
460-990 (1/10 Farenheit)

Cooling setpoint, standard schedule mode.

stdSysMode “OFF”, “HEAT”, “COOL”,
“AUTO”

System mode, standard schedule mode.

stdFanMode “OFF”, “AUTO”, “ON” Fan mode, standard schedule mode.

stdStart “00:00” – “23:59” Time of day when this interval starts, standard schedule mode.
Be careful not to set the interval start times to the same value,
and make sure the start times are sorted.

altHeat 150-400 (1/10 Celcius)
500-950 (1/10 Farenheit)

Heating setpoint in 1/10th degrees. (so 745 = 74.5 F), alternate
schedule mode.

altCool 150-450 (1/10 Celcius)
460-990 (1/10 Farenheit)

Cooling setpoint, alternate schedule mode.

altSysMode “OFF”, “HEAT”, “COOL”,
“AUTO”

System mode, alternate schedule mode.

altFanMode “OFF”, “AUTO”, “ON” Fan mode, alternate schedule mode.

altStart “00:00” – “23:59” Time of day when this interval starts, alternate schedule mode.
Be careful not to set the interval start times to the same value,
and make sure the start times are sorted.

OverrideMax 0 (disable) to 1439 Number of minutes the system will stay in override before it
automatically resets to programmed settings.

AllowOverride 0, 1 If set to 1, manual override (at the thermostat) will be allowed.
If set to 0, the thermostat keypad is locked from user input.

Example; Change the standard cooling setpoint in thermostat schdeule 1, all
weekdays, day and night intervals to 79.5F.
https://ezecontrol.com/api/control.php?
thermostatschedule=1&
day=1,2,3,4,5&
interval=2,3&
stdCool=795

(line breaks added for clarity)

Page 60 of 90

https://ezecontrol.com/api/control.php?thermostatschedule=1&
https://ezecontrol.com/api/control.php?thermostatschedule=1&

Scripting

Scripting introduction

The ezeio system supports the PAWN script language. PAWN has a C-like
syntax and executes completely inside the ezeio controller, allowing users to
add custom functionality to the ezeio controller.

This manual documents only the custom functions added to the language for
interaction with the ezeio resources. We assume the reader already has a
general understanding of programming languages, and should with the help
of the PAWN language guide (http://www.compuphase.com/pawn) be able to
learn the specifics of the language.

Help with programming

Using the scripting features of the ezeio is a non-trivial task. You will need
prior knowledge of computer programming languages to be able to use the
ezeio scripting efficiently.

eze System offers programming services on hourly basis. If you have a
specific feature request, please contact us.

Capabilities

The PAWN language is powerful enough to create very complex
functionality. Inputs, outputs, timers, schedules, alarm events and reporting
features are available to the script through the custom functions defined in
this manual, and the language can handle basic math, text strings, state
machines and complex logic.

Compiled code can grow up to 64kB and use up to 6kB of RAM.

The ezeio executes over 100k instructions per second.

Page 61 of 90

Event-driven design

Scripts written for the ezeio should be “event driven”. The ezeio defines a
number of system events that are suitable as containers for user logic. There
should be no “main loop” in the user code, as that would block the ability to
process system events. Instead, design your code to react on the events, and
as soon as you finish processing, return from the event call to allow the next
event to be processed.

For example, let's say you want to monitor two inputs and set an output if the
first input level exceeds the second. One recommended way to do this is:

@Tick(uptime) // called every second

{

 if(GetInputValue(1) > GetInputValue(2))

 SetOutput(1, 1); // turn the output on

 else

 SetOutput(1, 0); // turn the output off

}

The if-statement above will be processed once every second, and the output
set according to the result of the comparison of the inputs.

Processing the whole condition will be very quick (less than a millisecond),
so there will be plenty of time for other things to happen in your script.

String handling

The PAWN language defines strings as being either packed or unpacked. The ezeio
supports only packed strings, meaning that each character is stored in a single byte.

Please refer to the PAWN documentation for further details.

Sleep-function

The sleep() function defined in PAWN accepts one integer parameter, and
will suspend the script for the number of milliseconds given. Any system
events that occurs while the script is suspended will be queued, and called in
the order they occurred when the time expires. If the sleep was more than
one second, only the first Tick-event will be processed. The queue can hold
up to 32 events. If more events occur, they will be lost.

Please be aware of this when using the sleep() function.

Page 62 of 90

Script function library
The ezeio controller support most of the language constructs defined in the
PAWN language guide, including most of the functions for floating point
math and the “proposed function library”.

 In addition, the following functions are also supported:

Index of ezeio specific functions

Configuration interface functions
SetOutput(outputno, cadence, [cutoff])..65
GetOutputState(outputno)...65
GetInputValue(inputno)...66
SetInputValue(inputno, newvalue)...66
GetInputCount(inputno)...67
SetInputCount(inputno, newcount)..67
GetInputState(inputno)..67
GetScheduleState(scheduleno)..68

Calendar and time functions
GetSecond()..69
GetMinute()...69
GetHour()..69
GetDay()...69
GetMonth()..69
GetYear()..69
GetWeekday()...70
SetTimer([timerno], timeoutms, repeat)...70

Mathematical functions
Float:fabs(Float:value)..71
fround(Float:value, [method])..71
Float:ffract(Float:value)...71
Float:fsqrt(Float:value)..71
Float:flog(Float:value, [Float:base])...72
Float:fpow(Float:value, Float:exponent)..72
Float:fsin(Float:value)..72
Float:fcos(Float:value)...72
Float:ftan(Float:value)...72
Float:fasin(Float:value)..72
Float:facos(Float:value)...73
Float:fatan(Float:value)...73
Float:fatan2(Float:y, Float:x)..73
random([max])...73
min(value1, value2)...73
max(value1, value2)..73
clamp(value, min, max)...74

Page 63 of 90

float2cell(Float:value)..74
Float:cell2float(value)..74

Language functions
heapspace()..75
numargs()...75
getarg(argumentno, [index])..75
setarg(argumentno, [index], value)..75

String functions
tolower(character)...76
toupper(character)..76
strlen(string)..76
strcopy(dest[], const source[], [maxlength])...76
strcmp(string1[], string2[], [ingorecase], [length])..77
strcat(dest[], source[], [maxlength])...77
strdel(string[], start, end)...77
strfind(string[], sub[], [ignorecase], [index])..78
strins(dest[], src[], index, [maxlength])...78
strmid(dest[], source[], start, end, [maxlength])...78
strval(string, [index])..79
valstr(dest[], value)..79
memcpy(dest[], source[], index, length, maxlength)....................................79
strformat(dest[], maxlen, format[], [...])..80

Communication functions
PDebug(format[], ...)...81
ModbusSend(address, command, length, data[])..81

Library functions
GetTime(time[time_s], [UTC=false])..82
Linfit(Float:x[], Float:y[], ndata, &Float:a, &Float:b).....................................82
SunPosition(UTCtime[time_s], Float:latitude, Float:longitude, &Float:elevation,
&Float:azimuth)...83
Float:Enthalpy(Float:Alt, Float:RH, Float:Temp, [BTU=false]).....................83

System events
@Tick(uptime)...84
@Alarm(sourcetype, sourceid, alarmno)...84
@Restore(sourcetype, sourceid, alarmno)..84
@Timer(timerno)...85
@ModbusReply(address, command, length, data[])...................................85

Page 64 of 90

Configuration interface functions

SetOutput(outputno, cadence, [cutoff])

Use this function to directly control an output.
Parameter Range Description

outputno 1 – 40, required Which output to control.

cadence 0 – 7, required 0 = off
1 = on
2 = 100ms on, 900ms off
3 = 1s on, 9s off
4 = 2s on, 59s off
5 = 100ms on, 100ms off (5Hz blink)
6 = 500ms on, 500ms off (1Hz blink)
7 = 1s on, 1s off (0.5Hz blink)

cutoff 0 – 65535, optional.
Defaults to 0 (infinite)

Number of 1/10th seconds to run the cadence. When the cutoff
time expires the output will be turned off.

This function does not return a value.
Example: Turn on output 2 for 10 seconds:
SetOutput(2, 1, 100); // cutoff 100 is 10 seconds

GetOutputState(outputno)

Read the current status of an output
Parameter Range Description

outputno 1 – 40, required Which output to check

The return value is 1 if the output is active (on) and 0 if the output is inactive
(off).
Example: Check the status of output 8
if(GetOutputState(8))

// code to run if output is on

Page 65 of 90

GetInputValue(inputno)

Reads the raw value from an input.
Parameter Range Description

inputno 1 – 40, required Which input to read from.

The return value is the raw reading from the input. The unit depends on the
type of input :

Standard 0-10V input: Return raw mV, 0=0V, 10000=10V
Current 0-30mA input: Return 29uA units, 0=0mA, 1000=2.9mA, 6820=20mA
Pulse type input: Readout is ms between pulses (see below)
MicroLAN/Modbus sensors: Depends on sensor type (see below)

Example: Read the value from input 2 and assign the value to a variable.
in2mV = GetInputValue(2);

Example: Read the value from a microlan temperature sensor on input 5 as 1/10th C
Celcius = (10*GetInputValue(5))/16-55;

Example: Read the value from a microlan temperature sensor on input 1 as F
F = (100*GetInputValue(1))/888-67;

Example: Read power as kW from a pulse meter with 500 pulses per kWh
kW = 7200/GetInputValue(8);

SetInputValue(inputno, newvalue)

Set an input raw value to the specified value
Parameter Range Description

inputno 1 – 40, required Which input to set

newvalue -2147483648 –
2147483647, required

New value

This function does not return a value.

Important: The input source must be configured as “Special/Software”.
Example: Set the value of input 12 to 3456
SetInputValue(12, 3456);

Page 66 of 90

GetInputCount(inputno)

Reads the counter value from an input.
Parameter Range Description

inputno 1 – 40, required Which input to read from.

The return value is the current counter value for the input.
Example: Read the counter value from input 2 and assign the value to a variable.
mycnt = GetInputCount(2);

SetInputCount(inputno, newcount)

Set an input counter counter to a new value.
Parameter Range Description

inputno 1 – 40, required Which input to set

newcount 0 – 2147483647,
required

New value of the counter

This function does not return a value.
Example: Set the counter of input 5 to 456
SetInputCount(5, 456);

GetInputState(inputno)

Reads the current alarm state from the input.
Parameter Range Description

inputno 1 – 40, required Which input to read from.

The return value is a bitmap with four bits indicating the status of each of the
four alarms for this input. Bit 0=first alarm, Bit 3=fourth alarm.
Example: check the state of the third alarm for input 5:
if(GetInputState(5) & 0x04) // 0x04 = binary 0100

// Code to run if alarm was active

Page 67 of 90

GetScheduleState(scheduleno)

Read the current status of a schedule
Parameter Range Description

scheduleno 1 – 20, required Which schedule to read status from

The return value is 1 if the schedule is active, 0 if the schedule is inactive.
Example: Check the status of schedule 1
if(GetScheduleState(1))

// code to run if schedule is active

Page 68 of 90

Calendar and time functions

GetSecond()

Return the current second from the real-time clock.
This function does not have any parameters.
The return value is the current second, in the range 0-59.

GetMinute()

Return the current minute from the real-time clock.
This function does not have any parameters.
The return value is the current minute, in the range 0-59.

GetHour()

Return the current hour from the real-time clock.
This function does not have any parameters.
The return value is the current hour, in the range 0-23.

GetDay()

Return the current day of the month from the real-time clock.
This function does not have any parameters.
The return value is the current day, in the range 1-31.

GetMonth()

Return the current month from the real-time clock.
This function does not have any parameters.
The return value is the current month, in the range 1-12.

GetYear()

Return the current year from the real-time clock.
This function does not have any parameters.
The return value is the current year, in the range 2000-3000.

Page 69 of 90

GetWeekday()

Return the current year from the real-time clock.
This function does not have any parameters.
The return value is the current weekday, in the range 0 (Monday) through
6 (Sunday).

SetTimer([timerno], timeoutms, repeat)

Set a millisecond timer. The timer will generate a @Timer event when the
timeout is reached. Note that these timers are different from the timers in the
configuration.
Parameter Range Description

timerno 1 – 4, optional Which timer to set. If this parameter is omitted, the function will
use the first timer that is not running.

timeoutms 0 or 1 to 2147483647,
required

Number of milliseconds before generating the @Timer event.
If this parameter is 0, the timer will be cancelled and the @Timer
event will not be generated.

repeat 0, 1 (optional) If set to 1, the timer will automatically reset and trip again.
Defaults to 0.

Returns the timer number that was set, or 0 if no timer was set..
Example: Set timer 3 to expire in 1.5 seconds.
SetTimer(3, 1500);

Page 70 of 90

Mathematical functions

Float:fabs(Float:value)

Return the absolute value of a floating point value
Parameter Description

value Value to return absolute value of

Returns the absolute value

fround(Float:value, [method])

Round a floating point value to an integer
Parameter Description

value The value to round

method The rounding method to use. One of:
floatround_round (default, rounds to nearest integer. 0.5 rounds up)
floatround_floor (round down)
floatround_ceil (round up)
floatround_tozero (round down for positive values, round up of negative values)

Returns the value rounded off, as an integer.

Float:ffract(Float:value)

Return the fractional part of a number
Parameter Description

value The value to return the fractional part of.

Returns the fractional part of value.

Example: ffract(3.14) returns 0.14

Float:fsqrt(Float:value)

Return the square root of a value
Parameter Description

value The value to calculate the square root of

Returns the square root of the value.

Page 71 of 90

Float:flog(Float:value, [Float:base])

Return the logarithm of a value
Parameter Description

value The value to return the logarithm of

base Logarithmic base (optional, defaults to e, or 2.71828)

Float:fpow(Float:value, Float:exponent)

Raise a floating point value to a power
Parameter Description

value The value to raise

power The exponent. May be 0 or negative.

Float:fsin(Float:value)

Return the sine of a value
Parameter Description

value The value to calculate sine of

Float:fcos(Float:value)

Return the cosine of a value
Parameter Description

value The value to calculate cosine of

Float:ftan(Float:value)

Return the tangent of a value
Parameter Description

value The value to calculate tangent of

Float:fasin(Float:value)

Return the reverse sine of a value
Parameter Description

value The value to calculate reverse sine of

Page 72 of 90

Float:facos(Float:value)

Return the reverse cosine of a value
Parameter Description

value The value to calculate reverse cosine of

Float:fatan(Float:value)

Return the reverse tangent of a value
Parameter Description

value The value to calculate reverse tangent of

Float:fatan2(Float:y, Float:x)

Return the inverse circular tangent of y divided by x
Parameter Description

y, x coordinates

random([max])

Return a random value
Parameter Description

Max (optional) The max value of the random value, default to 65536.

Returns a random value between 0 and the given max.
If the max parameter is 0, the random value is between -2^31 and +2^31.

min(value1, value2)

Return the smaller of value1 and value2.
Parameter Description

value1, value2 The two values to compare

max(value1, value2)

Return the larger of value1 and value2.
Parameter Description

value1, value2 The two values to compare

Page 73 of 90

clamp(value, min, max)

Return the value, but no smaller than min, and no larger than max.
Parameter Description

value The value to clamp.

min The smallest value to return.

max The largest value to return.

float2cell(Float:value)

Return the Float value as a cell, using binary conversion (not converting it
through its value, but just copying the bits).
This is useful in communication functions when parsing binary buffers
containing float values.
Parameter Description

value The float value to return as a cell

Float:cell2float(value)

Return the cell value as a Float, using binary conversion (not converting it
through its value, but just copying the bits).
This is useful in communication functions when parsing binary buffers
containing float values.
Parameter Description

value The cell value to return as a Float.

Page 74 of 90

Language functions

heapspace()

Return the size of the heap, in bytes.
This function does not have any parameters.

numargs()

Return the number of arguments in a function call.
This function does not have any parameters.

getarg(argumentno, [index])

Return one argument from a function call.
Parameter Description

argumentno The argument number to return

index (optional) If the argument is an array, this is the index in the array (default to 0)

Returns the value of the argument.

setarg(argumentno, [index], value)

Set an argument value
Parameter Description

argumentno The argument number to return

index (optional) If the argument is an array, this is the index in the array (default to 0)

value The new value of the argument

This function does not return a value.

Page 75 of 90

String functions

tolower(character)

Return the lowercase version of the character code.
Parameter Description

character The character to convert to lowercase

toupper(character)

Return the upperrcase version of the character code.
Parameter Description

character The character to convert to uppercase

strlen(string)

Return the length of a string.
Parameter Description

string The string to compute the length of

strcopy(dest[], const source[], [maxlength])

Copy one string to a buffer.
Parameter Description

dest Destination buffer

source The string that will be copied

maxlength
(optional)

The max number of characters to copy (defaults to the length of the dest buffer.

Page 76 of 90

strcmp(string1[], string2[], [ingorecase], [length])

Compare two strings
Parameter Description

string1, string2 Two strings to compare

Ignorecase
(optional)

If “true”, case is ignored

Length (optional) The max number of characters to compare

The return value is:

-1 if string1 comes before string2
0 if the strings are equal
1 if string1 comes after string2

strcat(dest[], source[], [maxlength])

Concatenate two strings
Parameter Description

dest The first part, and the destination buffer

source The part that will be added to dest

Maxlength
(optional)

The maximum length of the destination buffer (defaults to max size of dest)

Returns the length of dest after concatenation

strdel(string[], start, end)

Remove a numbet of characters from a string
Parameter Description

string The string to work on

start The position of the first characted to remove (starting at 0)

end The position of the last character to remove. Must be equal to or larger than start.

Page 77 of 90

strfind(string[], sub[], [ignorecase], [index])

Search for a substring within a string
Parameter Description

string The string to search in

sub The string to search for

ignorecase
(optional)

If set to true, case is ignored in the search. Defaults to false.

index (optional) The position in string to start searching from (starting at 0), defaults to 0

strins(dest[], src[], index, [maxlength])

Insert a string into another string
Parameter Description

dest The buffer to work on

src The string to insert into dest

index The position in dest where the src buffer will be inserted

maxlength The maxumum permitted length of dest

strmid(dest[], source[], start, end, [maxlength])

Copy a section of one string to a buffer
Parameter Description

dest The destination buffer

src The source string

start (optional) The position of the first character in source to copy
Defaults to 0

end (optional) The position of the last character in source to copy (myst be equal to or grater than start)
Defaults to the last character in source

maxlength
(optional)

The maximum size of dest,
Defaults to the size of dest

Page 78 of 90

strval(string, [index])

Evaluate a string and return an integer
Parameter Description

string The string to evaluate

index (optional) The position in string to start evaluating from

Returns the integer value found in the string

valstr(dest[], value)

Convert an integer value to a string
Parameter Description

dest The destination buffer

value The integer value to convert to text

Returns the number of characters stored in dest excluding the teminating 0

memcpy(dest[], source[], index, length, maxlength)

Copy bytes from one buffer to another
Parameter Description

dest The destination buffer

source The source buffer

index The position in the source buffer from which to start copying

length The number of bytes to copy

maxlength
(optional)

The maximum size of the dest-buffer. Defaults to the size of dest

Page 79 of 90

strformat(dest[], maxlen, format[], [...])

Format a string and insert placeholders
Parameter Description

dest The destination buffer

maxlen The maximum number of characters in the resulting buffer (defaults to the size of the dest
buffer)

format A string that describes the format of the result

… The parameters for the placeholders

The format parameter is a string that may contain placeholders. The
following placeholders are supported:

%c – a single character
%d – an integer
%x – an integer presented as lowercase hex
%X – an integer presented as uppercase hex
%f – a rational (floating point) number
%s – a string

Placeholders can be formatted with a number immediately following the %-
sign. The number indicates the field width in characters, and will add spaces
if needed. To pad with zeros instead, enter the field with preceded with a
zero.

To output a percent character, enter “%%”

Example: “%5d” will output something like “ 123”. “%05d” will output
something like “00123”.

Page 80 of 90

Communication functions

PDebug(format[], ...)

Send a string to the debug output on the server
Parameter Description

format String with optional placeholders

... Zero or more values to insert in the placeholders

This function requires a working server link. It sends a string to the debug
output screen of the server. The string can be formatted according to
standard C-style printf.

There is a throttling mechanism to prevent PDebug messages from saturating
the communications link. If you send more than 100 PDebug, and the delay
between the messages is shorter than 5 seconds, messages will be dropped.

ModbusSend(address, command, length, data[])

Send out a command to a Modbus device
Parameter Description

address The destination address of the modbus device (1-63)

command The modbus command. One of:
 READ_COILS (0x01)
 READ_INPUTS (0x02)
 READ_REGISTERS (0x03)
 READ_INPUT_REGISTERS (0x04)
 WRITE_COIL (0x05)
 WRITE_REGISTER (0x06)
 READ_EXCEPTION (0x07)
 DIAGNOSTIC (0x08)
 WRITE_REGISTERS (0x10)
 READ_DEVICEID (0x2B)

length Number of bytes to send after the command byte

data The bytes to send. Refer to the modbus specification and your specific device manual for
detailed information on the content of this parameter.
Up to 10 bytes can be send in a single command call.

If a response is received as a result of this function, the @ModbusReply
function will be called.

Page 81 of 90

Library functions

Library functions are declared as stock functions and will be included automatically if
referenced from the user script. Using a stock function will add significantly to the size of
your code, so make sure your script does not grow beyond 64k compiled.

GetTime(time[time_s], [UTC=false])

This function will fill in the supplied time[time_s] structure with current
local date and time. If UTC is sett to true, UTC time is returned.
Parameter Description

time[time_s] Structure for date and time, with the following properties:
 ti_year, ti_month, ti_day, ti_hour, ti_minute, ti_second, ti_wday

UTC (optional) Flag (true or false). If set to true, the returned time is UTC time instead of local time.

Example usage:

new t[time_s];
GetTime(t);
PDebug(“Time %d:%d:%d”, t[ti_hour], t[ti_minute], t[ti_second]);

Linfit(Float:x[], Float:y[], ndata, &Float:a, &Float:b)

This function calculates a best-fit straight line using the least squares method
Parameter Description

x[], y[] Coordinated to use in calculation

ndata How many points to expect in x[] and y[] arrays.

a Line offset

b Line slope

Page 82 of 90

SunPosition(UTCtime[time_s], Float:latitude, Float:longitude,
&Float:elevation, &Float:azimuth)

This function returns the relative position of the sun, given time and
position.
Parameter Description

UTCtime[time_s] Structure with time and date. Note that this needs to be UTC time.

latitude Latitude of observation point, in degrees from equator. Positive numbers are north.

longitude Longitude of observation point, in degrees from Greenwich meridian. Positive
numbers are east.

&elevation The function will set this variable with the elevation of the sun above the horizon, in
degrees. Negative numbers mean that the sun is below the equator.

&azimuth The function will set this variable with the azimuth of the sun, in degrees. 0 is north, 90
is east, 180 is south and 270 is west.

Example usage:

new t[time_s];
new Float:elev, Float:azim;
GetTime(t, true); // Get UTC time
SunPosition(t, 61.191,-149.802, elev, azim); // Anchorage, AK
PDebug(“Elevation:%f, Azimuth:%f”, elev, azim);

Float:Enthalpy(Float:Alt, Float:RH, Float:Temp, [BTU=false])

This function calculates the energy content in moist air.
Parameter Description

Alt Altitude in meters

RH Relative humidity, between 0 and 1

Temp Temperature, degrees Celcius

BTU (optional) false (default) returns value in SI units (kJ/kg dry air). true returns value in English
units (Btu/lb dry air)

Page 83 of 90

System events

@Tick(uptime)

The @Tick function is called automatically once every second.
Parameter Description

uptime Number of seconds since last system reset.

@Alarm(sourcetype, sourceid, alarmno)

The @Alarm function is called each time an alarm event is generated from
the configuration. The function is called even if there are no actions
configured, and regardless of conditions on any existing actions.
Parameter Description

sourcetype Indicates the source of the alarm event, and is one of:
SOURCE_INPUT (1) – source is an input
SOURCE_SCHEDULE (2) – source is a schedule
SOURCE_TIMER (3)– source is a timer

sourceid Indicates the source index, e.g. the input number (1-40), schedule number (1-20) or
timer number (1-20)

alarmno Indicates the alarm number (1-4)

@Restore(sourcetype, sourceid, alarmno)

The @Restore function is called each time a restore event is generated from
the configuration. The function is called even if there are no actions
configured, and regardless of conditions on any existing actions.
Parameter Description

sourcetype Indicates the source of the restore event, and is one of:
SOURCE_INPUT (1) – source is an input
SOURCE_SCHEDULE (2) – source is a schedule
SOURCE_TIMER (3)– source is a timer

sourceid Indicates the source index, e.g. the input number (1-40), schedule number (1-20) or
timer number (1-20)

alarmno Indicates the alarm number (1-4)

Page 84 of 90

@Timer(timerno)

The @Timer function is called when a millisecond timer set with the
“SetTimer” function expires. Note that the millisecond times has nothing to
do with the timers in the configuration settings.
Parameter Description

timerno The number of the timer that expired (1-4)

@ModbusReply(address, command, length, data[])

This function is called when a reply is received from a Modbus device as a
result of a call to ModbusSend.
Parameter Description

address The modbus device address that replied

command The modbus command number (see ModbusSend)

length Number of bytes in the data[] array.

data[] A byte-array with the received data as it was received over ModBus.
Note that the array starts with the byte after the command byte.
The max number of bytes that can be received in one call is 20.

Example:

mbReadReg(deviceadr, regno, regcount)
{
 new b[4 char];
 regno = (regno%10000)-1; // Modbus address mapping
 b{0} = (regno>>8)&0xFF; // Build command buffer
 b{1} = regno&0xFF;
 b{2} = (regcount>>8)&0xFF;
 b{3} = regcount&0xFF;
 ModbusSend(deviceadr, READ_REGISTERS, 4, b); // Queue for sending
}

@Tick(uptime)
{
 if((uptime%20)==0) { // every 20 seconds..
 mbReadReg(5, 40047, 1); // Request register 40047 from device 5
 }
}

@ModbusReply(address, command, length, data[])
{
 new x;
 // Make sure this is a reply to the above query
 if((address==5) && (ModbusCommand:command==READ_REGISTERS)) {
 x = (data{1}<<8)|data{2}; // Extract a 16 bit value
 PDebug("Read %d", x); // Print the value on debug console
 }
}

Page 85 of 90

Specifications

ezeio™ Controller

Size 153 x 100 x 38 mm (6.0” x 3.9” x 1.5”)
mounting ears extend 15mm (0.6”) on each side. Hole
centers are 166mm (6.5”) apart. Allow at least 40mm
(1.6”) margin for connectors

Weight Approx 220g (0.5lb)

Power 8-25VDC, <1W average, 7W peak

Operating
environment

0-50°C (32-120°F)

Hardwire inputs 4 inputs on screw terminal:
0-10V, 10mV resolution, >10kΩ impedance
0-30mA, 32uA resolution, 100Ω current sense resistor

Hardwire outputs 2 relay outputs with screw connections:
Form C (1 pole switching)
Max 2A, 50V load

Other connections Ethernet, TP 10/100, RJ45
MicroLAN, RJ12
Serial RS485, RJ45-jack
GSM antenna SMA (optional)

Expandability Up to 40 sensor inputs total
Up to 40 outputs total

MicroLan Max 20 MicroLAN devices supported
Active pullup on data wire
5V and raw DC provided
RJ12 jack compliant to Dallas connector standard
Max 50m (150ft) network length

DC output Unregulated output, max 200mA (“+” terminals)
Regulated 5V output, max 100mA (“5” terminal).

Serial RS485/Modbus RTU, bidirectional 19200bps

GSM (optional) Tri-band 900/1800/1900MHz, GSM/GPRS

Page 86 of 90

Configuration and programming

Logging Individual logging on each input. 5s to 4h interval.
Automatically communicated and stored on redundant
servers.

Input triggers Up to four alarms per input, each with alarm/restore
thresholds and separate holdoff times.
Each alarm and restore can trip up to four separate
actions, such as sending messages, controlling outputs
or counters.

Schedules Up to 20 schedules, each with four intervals and flags for
each day in the week. Up to four actions for each
schedule on entry/exit of an interval.

Timers Up to 20 timers, each can be set to repeat hourly, daily,
weekly or monthly. Each timer can trip up to four actions.

Scripts (optional) Up to 64kB compiled script code, with 6kB of RAM.
Extensive function library with support for floating point
math, string manipulation and communication functions.

Server Communication

Configuration Automatic, DHCP

Host protocol IP/UDP, proprietary encrypted payload

Port Outbound port UDP 8844
Inbound port UDP 28672-32767 (random per session)

Encryption 128 bits, unique key per controller

Traffic Typical less than 5MB / month
(depends on usage)

Page 87 of 90

Warranty

All controllers and accessories (the products) manufactured by eze System,
Inc. are warranted for two years against manufacturing issues. The warranty
is void if the products have been physically altered or subjected to conditions
beyond the physical limits of the devices.

Disclaimer

eze System is not liable for any injury or mishap sustained by the use of the
product. Please consult with a qualified dealer/installer before placing the
product in service. The end user of the products acknowledges risks and
waives any and all claims against eze System, Inc. and any of its agents. eze
System is not responsible for any applications of its products or the
suitability of its products for any application. Dealer may attach any sensor
or device to the ezeio™ controller, but company only warrants that the
product will log, monitor and control that device if it is properly configured
and if the Internet connection has been properly initiated and maintained.
Company is never responsible for any losses incurred by failure of a dealer
designed system which results in any monetary loss, injury or loss of life.
The company’s products are not designed to be fail-safe or fool-proof and
should not be used in safety critical applications.

Page 88 of 90

Standards compliance

 Part 15 B

Note: This equipment has been tested and found to comply with the limits for a Class B digital device,
pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection
against harmful interference in a residential installation. This equipment generates, uses and can
radiate radio frequency energy and, if not installed and used in accordance with the instructions, may
cause harmful interference to radio communications. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment does cause harmful
interference to radio or television reception, which can be determined by turning the equipment off
and on, the user is encouraged to try to correct the interference by one or more of the following
measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

 2004/108/EC (EMC), 73/23/EC (LVD)

This equipment meets or exceeds the requirements of the following standards: EN55022 class B,
EN55024, EN6100-3-2/3, EN60950.

California Safe Drinking Water and Toxic Enforcement Act of 1986:

WARNING: This product contains chemicals known to the State of California to cause cancer and
birth defects or other reproductive harm.

Page 89 of 90

Access your controllers at:

www.ezecontrol.com

Controller email:

{serial}@ezecontrol.com

subject doesn't matter, first line of message is password

Controller SMS:

+1 612 326-5729

controller serial, password, command

Visit the eze website at
www.ezesys.com

For further information, contact your vendor or
find your regional support center at the eze website.

The eze trademark, ezeio and the eze system design are property of eze System, Inc.

Any other trademarks referenced are properties of their respective owner.

© eze System, Inc 2008-2012
www.ezesys.com

Page 90 of 90

http://www.ezesys.com/
mailto:XYZ987@ezecontrol.com
http://www.exys.net/
http://www.ezecontrol.com/

	Important information
	WARNING
	Registration
	Support contact information

	Introduction
	What is the ezeio™ ?
	Model information

	Creating accounts and users
	Overview
	Creating a new account
	Add a controller to an existing account
	Adding users to an existing account

	Connections and installation
	Things to consider before installing the ezeio™
	Power connection
	Network connection
	Standard inputs
	Standard inputs – Voltage and resistive sensors
	Standard inputs – Current sensors
	Relay outputs
	+ DC output terminal
	MicroLAN
	Local bus indicator
	Connecting a MicroLAN device
	MicroLAN connector pinout

	Modbus / serial port
	RS-485/Modbus port pinout
	Connecting a Modbus device

	GSM module
	GSM Settings
	Radio indicator

	Web interface overview
	Logging in

	Dashboard screen
	Dashboards

	Status screen
	Live input status
	Output status and control
	Thermostat status
	Event log
	Downloading log data
	Viewing graph of log data
	Controlling the graph

	Configure screen
	Resource tree
	Service status and settings
	
	Status
	Setting

	Inputs
	Input name
	Unit
	Decimals to show
	Max value in graphs
	Min value in graphs
	Input type
	Input Raw to unit
	Unit to input Raw
	Digital pulse input
	Log interval
	Input location

	Alarm settings
	Alarm name
	Threshold for alarm
	Alarm holdoff
	Threshold for restore
	Restore holdoff

	Actions
	Action name
	Action type
	Send message
	Log event
	Set output
	Set counter
	Increment counter
	Decrement counter

	Notes about the Message field
	Controlling the email subject

	Conditions
	Input in alarm / not in alarm (restored)
	Input less than (some value) / more than (some value)
	Counter less than (some value) / more than (some value)
	Counter equal to (some value)
	Schedule active / inactive

	Outputs
	Output name
	Output location
	Use only conditions

	Schedules
	Timers
	Thermostats / Thermostat schedules
	Thermostat schedule conditions
	Other settings / Stir

	Devices
	Configuring Modbus Devices

	Script (premium feature)
	System
	Controller name
	Controller location
	System info address
	Time zone
	API requests
	Read passcode
	Control passcode
	Registration code
	Allow firmware update
	Allow config update
	Allow dealer access
	Delete controller
	Ethernet settings
	Phone module PIN
	SIM card PIN
	GPRS APN, login name , password
	Phone init string
	GPRS init string
	Clone Controller
	Modbus speed
	Use slow polling
	Type of controller
	Firmware version
	Last system reset
	Last comm reset
	Last contact
	Last endpoint
	Last local IP

	Account screen
	Account
	Contact email
	System info address
	Account status

	Personal
	Users
	Log in
	Edit own info
	Edit controllers
	Remote control
	Release controllers
	Manage account

	Sending control commands
	Email
	Control via SMS (cellphone texting)

	Server API
	API access and security
	API authentication and example

	Live data in Excel or OO Calc
	In Microsoft Excel **:
	In OpenOffice Calc:

	Live status in JSON format via REST API
	Historical data access in JSON format via REST API
	Controlling the ezeio via REST API
	Direct output control : 'output'
	Set input counter : 'counter'
	Set input value: 'input'
	Set timer: 'timer'
	Control thermostat: 'thermostat'
	Modify thermostat schedule: 'thermostatschedule'

	Scripting
	Scripting introduction
	Help with programming
	Capabilities
	Event-driven design
	String handling
	Sleep-function

	Script function library
	Configuration interface functions
	SetOutput(outputno, cadence, [cutoff])
	GetOutputState(outputno)
	GetInputValue(inputno)
	SetInputValue(inputno, newvalue)
	GetInputCount(inputno)
	SetInputCount(inputno, newcount)
	GetInputState(inputno)
	GetScheduleState(scheduleno)

	Calendar and time functions
	GetSecond()
	GetMinute()
	GetHour()
	GetDay()
	GetMonth()
	GetYear()
	GetWeekday()
	SetTimer([timerno], timeoutms, repeat)

	Mathematical functions
	Float:fabs(Float:value)
	fround(Float:value, [method])
	Float:ffract(Float:value)
	Float:fsqrt(Float:value)
	Float:flog(Float:value, [Float:base])
	Float:fpow(Float:value, Float:exponent)
	Float:fsin(Float:value)
	Float:fcos(Float:value)
	Float:ftan(Float:value)
	Float:fasin(Float:value)
	Float:facos(Float:value)
	Float:fatan(Float:value)
	Float:fatan2(Float:y, Float:x)
	random([max])
	min(value1, value2)
	max(value1, value2)
	clamp(value, min, max)
	float2cell(Float:value)
	Float:cell2float(value)

	Language functions
	heapspace()
	numargs()
	getarg(argumentno, [index])
	setarg(argumentno, [index], value)

	String functions
	tolower(character)
	toupper(character)
	strlen(string)
	strcopy(dest[], const source[], [maxlength])
	strcmp(string1[], string2[], [ingorecase], [length])
	strcat(dest[], source[], [maxlength])
	strdel(string[], start, end)
	strfind(string[], sub[], [ignorecase], [index])
	strins(dest[], src[], index, [maxlength])
	strmid(dest[], source[], start, end, [maxlength])
	strval(string, [index])
	valstr(dest[], value)
	memcpy(dest[], source[], index, length, maxlength)
	strformat(dest[], maxlen, format[], [...])

	Communication functions
	PDebug(format[], ...)
	ModbusSend(address, command, length, data[])

	Library functions
	GetTime(time[time_s], [UTC=false])
	Linfit(Float:x[], Float:y[], ndata, &Float:a, &Float:b)
	SunPosition(UTCtime[time_s], Float:latitude, Float:longitude, &Float:elevation, &Float:azimuth)
	Float:Enthalpy(Float:Alt, Float:RH, Float:Temp, [BTU=false])

	System events
	@Tick(uptime)
	@Alarm(sourcetype, sourceid, alarmno)
	@Restore(sourcetype, sourceid, alarmno)
	@Timer(timerno)
	@ModbusReply(address, command, length, data[])

	Specifications
	ezeio™ Controller
	Configuration and programming
	Server Communication
	Warranty
	Disclaimer

	Standards compliance

